14 research outputs found

    Circuit Modeling of Dual Band MIMO Diversity Antenna for LTE and X-Band Applications

    Get PDF
    This paper presents a study on developing a dual-band antenna equivalent circuit model for X-Band and LTE applications. MIMO antennas play a crucial role in modern wireless communication systems, and understanding their impedance behavior is essential. This work proposes a dual-band lumped equivalent circuit model, utilizing gradient optimization based on antenna-simulated S-parameters in Advanced Design System (ADS). The four radiating elements of the MIMO antenna are accurately modeled, considering their geometry and the defected ground structure (DGS) effect, which enhances the antenna's isolation and low correlation coefficient (ECC). The calculated lumped equivalent circuit model is validated through rigorous simulation and measurement data, demonstrating consistency with the expected results. The experimental measurements show measured isolation exceeding 20 dB while achieving a maximum realized gain of 5.9 dBi and an efficiency of 87%. The developed model holds promise for improving the design and performance of MIMO antennas for various applications

    Split Rectangular Loop Resonator Inspired MIMO Monopoles for GSM/LTE/WLAN Applications

    No full text

    Characteristic Mode Analysis and Design of Wide Band MIMO Antenna Consisting of Metamaterial Unit Cell

    No full text
    This paper presents a full wave simulation and characteristic mode-based design of a multiple-input-multiple-output (MIMO) antenna at 5.8 GHz for wireless local area network applications. The driven analysis comprises two antennas that are placed orthogonal to each other. A metamaterial unit structure in the form of a rectangular loop resonator is placed around the antenna element to reduce the electromagnetic interference and to increase the isolation between the two monopoles. A characteristic mode technique is employed to find out the dominant mode of the proposed antenna without a feeding port. It was revealed that mode 1 was the dominant mode among the three modes used. The MIMO antenna is constructed and measured using a vector network analyzer. A good isolation of less than 25 dB was attained with a wide impedance bandwidth of 65.5%

    Reduction of Mutual Coupling in UWB/MIMO Antenna using Stub Loading Technique

    No full text
    The research presents mutual coupling reduction between UWB-MIMO antenna elements using stub loading technique. The proposed 2 × 2 UWB antenna geometry consists of two circular-shaped monopole radiators with a partial ground for perfect impedance matching. Stubs of 20 mm × 0.2 mm areinserted between the two antenna elements in the ground plane to improve the isolation. The decoupling stub leads to a mutual coupling reduction of less than 20 dB. The farfield measurement at a selected frequency of 10 GHz confirms an omnidirectional radiation pattern. Different MIMO antenna metric such as channel capacity loss (CCL), mean effective gain (MEG), total active reflection coefficient (TARC), envelope correlationcoefficient (ECC), and surface current are presented. Details of the design considerations and the simulation and measurement results are presented and discussed. The proposed MIMO antenna array can be well suited for UWB applications

    Circuit Modeling of Dual Band MIMO Diversity Antenna for LTE and X-Band Applications

    Get PDF
    This paper presents a study on developing a dual-band antenna equivalent circuit model for X-Band and LTE applications. MIMO antennas play a crucial role in modern wireless communication systems, and understanding their impedance behavior is essential. This work proposes a dual-band lumped equivalent circuit model, utilizing gradient optimization based on antenna-simulated S-parameters in Advanced Design System (ADS). The four radiating elements of the MIMO antenna are accurately modeled, considering their geometry and the defected ground structure (DGS) effect, which enhances the antenna's isolation and low correlation coefficient (ECC). The calculated lumped equivalent circuit model is validated through rigorous simulation and measurement data, demonstrating consistency with the expected results. The experimental measurements show measured isolation exceeding 20 dB while achieving a maximum realized gain of 5.9 dBi and an efficiency of 87%. The developed model holds promise for improving the design and performance of MIMO antennas for various applications

    Reduction of Mutual Coupling in UWB/MIMO Antenna Using Stub Loading Technique

    No full text
    The research presents mutual coupling reduction between UWB-MIMO antenna elements using stub loading technique. The proposed 2 × 2 UWB antenna geometry consists of two circular-shaped monopole radiators with a partial ground for perfect impedance matching. Stubs of 20 mm × 0.2 mm are inserted between the two antenna elements in the ground plane to improve the isolation. The decoupling stub leads to a mutual coupling reduction of less than 20 dB. The farfield measurement at a selected frequency of 10 GHz confirms an omnidirectional radiation pattern. Different MIMO antenna metric such as channel capacity loss (CCL), mean effective gain (MEG), total active reflection coefficient (TARC), envelope correlation coefficient (ECC), and surface current are presented. Details of the design considerations and the simulation and measurement results are presented and discussed. The proposed MIMO antenna array can be well suited for UWB applications

    Unraveling the pathophysiology of schizophrenia: insights from structural magnetic resonance imaging studies

    Get PDF
    BackgroundSchizophrenia affects about 1% of the global population. In addition to the complex etiology, linking this illness to genetic, environmental, and neurobiological factors, the dynamic experiences associated with this disease, such as experiences of delusions, hallucinations, disorganized thinking, and abnormal behaviors, limit neurological consensuses regarding mechanisms underlying this disease.MethodsIn this study, we recruited 72 patients with schizophrenia and 74 healthy individuals matched by age and sex to investigate the structural brain changes that may serve as prognostic biomarkers, indicating evidence of neural dysfunction underlying schizophrenia and subsequent cognitive and behavioral deficits. We used voxel-based morphometry (VBM) to determine these changes in the three tissue structures: the gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). For both image processing and statistical analysis, we used statistical parametric mapping (SPM).ResultsOur results show that patients with schizophrenia exhibited a significant volume reduction in both GM and WM. In particular, GM volume reductions were more evident in the frontal, temporal, limbic, and parietal lobe, similarly the WM volume reductions were predominantly in the frontal, temporal, and limbic lobe. In addition, patients with schizophrenia demonstrated a significant increase in the CSF volume in the left third and lateral ventricle regions.ConclusionThis VBM study supports existing research showing that schizophrenia is associated with alterations in brain structure, including gray and white matter, and cerebrospinal fluid volume. These findings provide insights into the neurobiology of schizophrenia and may inform the development of more effective diagnostic and therapeutic approaches

    Metamaterial based design of compact UWB/MIMO monopoles antenna with characteristic mode analysis

    Get PDF
    This article belongs to the Special Issue Millimeter-wave and Terahertz Applications of Metamaterials.In this article, a novel metamaterial inspired UWB/multiple-input-multiple-output (MIMO) antenna is presented. The proposed antenna consists of a circular metallic part which formed the patch and a partial ground plane. Metamaterial structure is loaded at the top side of the patches for bandwidth improvement and mutual coupling reduction. The proposed antenna provides UWB mode of operation from 2.6-12 GHz. The characteristic mode theory is applied to examine each physical mode of the antenna aperture and access its many physical parameters without exciting the antenna. Mode 2 was the dominant mode among the three modes used. Considering the almost inevitable presence of mutual coupling effects within compact multiport antennas, we developed an additional decoupling technique in the form of perturbed stubs, which leads to a mutual coupling reduction of less than 20 dB. Finally, different performance parameters of the system, such as envelope correlation coefficient (ECC), channel capacity loss (CCL), diversity gain, total active reflection coefficient (TARC), mean effective gain (MEG), surface current, and radiation pattern, are presented. A prototype antenna is fabricated and measured for validation

    Metamaterial Based Design of Compact UWB/MIMO Monopoles Antenna with Characteristic Mode Analysis

    No full text
    In this article, a novel metamaterial inspired UWB/multiple-input-multiple-output (MIMO) antenna is presented. The proposed antenna consists of a circular metallic part which formed the patch and a partial ground plane. Metamaterial structure is loaded at the top side of the patches for bandwidth improvement and mutual coupling reduction. The proposed antenna provides UWB mode of operation from 2.6–12 GHz. The characteristic mode theory is applied to examine each physical mode of the antenna aperture and access its many physical parameters without exciting the antenna. Mode 2 was the dominant mode among the three modes used. Considering the almost inevitable presence of mutual coupling effects within compact multiport antennas, we developed an additional decoupling technique in the form of perturbed stubs, which leads to a mutual coupling reduction of less than 20 dB. Finally, different performance parameters of the system, such as envelope correlation coefficient (ECC), channel capacity loss (CCL), diversity gain, total active reflection coefficient (TARC), mean effective gain (MEG), surface current, and radiation pattern, are presented. A prototype antenna is fabricated and measured for validation

    Electroencephalogram (EEG) Based Imagined Speech Decoding and Recognition

    No full text
    The recent investigations and advances in imagined speech decoding and recognition has tremendously improved the decoding of speech directly from brain activity with the help of several neuroimaging techniques that assist us in exploring the neurological processes of imagined speech. This development leads to assist people with disabilities to benefit from neuroprosthetic devices that improve the life of those suffering from neurological disorders. This paper presents the summary of recent progress in decoding imagined speech using Electroenceplography (EEG) signal, as this neuroimaging method enable us to monitor brain activity with high temporal resolution, it is very portable, low cost, and safer as compared to other methods. Therefore, it is a good candidate in investigating an imagined speech decoding from the human cortex which remains a challenging task. The paper also reviews some recent techniques, challenges, future recommendations and possible solutions to improve prosthetic devices and the development of brain computer interface system (BCI)
    corecore